AI Study Case: Chat in own story contents

Architecture Solutions for Building a RAG-Based Story Analysis Chat

Below is a comparison of different architectural approaches, their complexity, learning time, and pros/cons:

ArchitectureComplexityLearning TimeAdvantagesDisadvantages
Basic RAG with Vector DBLow1-2 daysQuick setup, minimal dependencies, Python-friendly.Limited scalability, basic retrieval, no advanced NLP features.
Advanced RAG (LangChain/LlamaIndex)Medium3-7 daysModular workflows, multi-doc support, better prompt engineering.Requires learning LangChain/LlamaIndex APIs.
NLP-Enhanced RAGMedium-High1-2 weeksAdds entity recognition, summarization, and topic modeling.Requires NLP expertise (e.g., spaCy, NLTK).
Cloud-Based RAG (AWS/GCP)High1-3 weeksScalable, managed services, serverless options.Costly for large datasets, vendor lock-in, cloud-specific learning.
Real-Time RAG with StreamingHigh2-4 weeksReal-time updates (e.g., new story content).Complex setup (e.g., Kafka/Spark), overkill for static datasets.

Mermaid Architecture Diagrams

graph LR
    %% Basic RAG with Vector DB
    subgraph Basic RAG
        A[Story Documents] --> B[Vector Database<br> FAISS/Chroma]
        B --> C[Retriever]
        C --> D[LLM<br>e.g., GPT-3.5, Llama2]
        D --> E[Response]
    end

    %% Advanced RAG (LangChain)
    subgraph Advanced RAG
        F[Story Documents] --> G[Preprocessor]
        G --> H[Vector DB + Metadata]
        H --> I[LangChain<br>RetrievalQA]
        I --> J[Custom Prompts]
        J --> K[LLM]
        K --> L[Response]
    end

    %% NLP-Enhanced RAG
    subgraph NLP-Enhanced RAG
        M[Story Documents] --> N[spaCy NLP Pipeline]
        N --> O[Entities/Summaries]
        O --> P[Vector DB]
        P --> Q[Retriever + LLM]
        Q --> R[Enriched Response]
    end

    %% Cloud-Based RAG
    subgraph Cloud RAG
        S[Story Documents] --> T[Cloud Storage<br> S3/GCS]
        T --> U[Managed LLM<br>Bedrock/Vertex AI]
        U --> V[Lambda/Cloud Function]
        V --> W[API Response]
    end

    %% Real-Time RAG
    subgraph Real-Time RAG
        X[New Story Content] --> Y[Kafka/Spark Stream]
        Y --> Z[Real-Time Processing]
        Z --> AA[Update Vector DB]
        AA --> AB[LLM]
        AB --> AC[Live Response]
    end

Tool Selection Guide (Python-Centric)

Core Components:

ComponentTools
Vector DatabaseFAISS (local), Chroma (local), Pinecone (cloud)
LLM IntegrationHugging Face Transformers, OpenAI API, Llama.cpp (local LLMs)
RAG FrameworkLangChain, LlamaIndex, Haystack
NLP PreprocessingspaCy, NLTK, Gensim
Cloud ServicesAWS Bedrock, Google Vertex AI, Azure AI
StreamingApache Kafka (with kafka-python), RabbitMQ
APIs/DeploymentFastAPI, Flask, Docker
  • Start Simple:

    • Vector DB: FAISS (easy Python integration).
    • LLM: Hugging Face’s flan-t5 or GPT-3.5-turbo.
    • Framework: LangChain (simplifies RAG pipelines).
    • NLP: spaCy for entity extraction.
  • Scale Up (if needed):

    • Use LlamaIndex for document structuring or Pinecone for scalable vector search.
    • Deploy with FastAPI + Docker for a web interface.
  • Python Libraries to Prioritize:

    # Pip install example
    pip install langchain faiss-cpu transformers spacy sentence-transformers fastapi