Architecture Solutions for Building a RAG-Based Story Analysis Chat
Below is a comparison of different architectural approaches, their complexity, learning time, and pros/cons:
Architecture | Complexity | Learning Time | Advantages | Disadvantages |
---|---|---|---|---|
Basic RAG with Vector DB | Low | 1-2 days | Quick setup, minimal dependencies, Python-friendly. | Limited scalability, basic retrieval, no advanced NLP features. |
Advanced RAG (LangChain/LlamaIndex) | Medium | 3-7 days | Modular workflows, multi-doc support, better prompt engineering. | Requires learning LangChain/LlamaIndex APIs. |
NLP-Enhanced RAG | Medium-High | 1-2 weeks | Adds entity recognition, summarization, and topic modeling. | Requires NLP expertise (e.g., spaCy, NLTK). |
Cloud-Based RAG (AWS/GCP) | High | 1-3 weeks | Scalable, managed services, serverless options. | Costly for large datasets, vendor lock-in, cloud-specific learning. |
Real-Time RAG with Streaming | High | 2-4 weeks | Real-time updates (e.g., new story content). | Complex setup (e.g., Kafka/Spark), overkill for static datasets. |
Mermaid Architecture Diagrams
graph LR
%% Basic RAG with Vector DB
subgraph Basic RAG
A[Story Documents] --> B[Vector Database<br> FAISS/Chroma]
B --> C[Retriever]
C --> D[LLM<br>e.g., GPT-3.5, Llama2]
D --> E[Response]
end
%% Advanced RAG (LangChain)
subgraph Advanced RAG
F[Story Documents] --> G[Preprocessor]
G --> H[Vector DB + Metadata]
H --> I[LangChain<br>RetrievalQA]
I --> J[Custom Prompts]
J --> K[LLM]
K --> L[Response]
end
%% NLP-Enhanced RAG
subgraph NLP-Enhanced RAG
M[Story Documents] --> N[spaCy NLP Pipeline]
N --> O[Entities/Summaries]
O --> P[Vector DB]
P --> Q[Retriever + LLM]
Q --> R[Enriched Response]
end
%% Cloud-Based RAG
subgraph Cloud RAG
S[Story Documents] --> T[Cloud Storage<br> S3/GCS]
T --> U[Managed LLM<br>Bedrock/Vertex AI]
U --> V[Lambda/Cloud Function]
V --> W[API Response]
end
%% Real-Time RAG
subgraph Real-Time RAG
X[New Story Content] --> Y[Kafka/Spark Stream]
Y --> Z[Real-Time Processing]
Z --> AA[Update Vector DB]
AA --> AB[LLM]
AB --> AC[Live Response]
end
Tool Selection Guide (Python-Centric)
Core Components:
Component | Tools |
---|---|
Vector Database | FAISS (local), Chroma (local), Pinecone (cloud) |
LLM Integration | Hugging Face Transformers, OpenAI API, Llama.cpp (local LLMs) |
RAG Framework | LangChain, LlamaIndex, Haystack |
NLP Preprocessing | spaCy, NLTK, Gensim |
Cloud Services | AWS Bedrock, Google Vertex AI, Azure AI |
Streaming | Apache Kafka (with kafka-python ), RabbitMQ |
APIs/Deployment | FastAPI, Flask, Docker |
Recommended Stack for a Writer:
-
Start Simple:
- Vector DB: FAISS (easy Python integration).
-
LLM: Hugging Face’s
flan-t5
or GPT-3.5-turbo. - Framework: LangChain (simplifies RAG pipelines).
- NLP: spaCy for entity extraction.
-
Scale Up (if needed):
- Use LlamaIndex for document structuring or Pinecone for scalable vector search.
- Deploy with FastAPI + Docker for a web interface.
-
Python Libraries to Prioritize:
# Pip install example pip install langchain faiss-cpu transformers spacy sentence-transformers fastapi